MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous Core Partitions: Parameterizations and Sums

Author(s)
Wang, Victor Y.
Thumbnail
DownloadWang-2016-Simultaneous core.pdf (519.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Fix coprime s; t > 1. We re-prove, without Ehrhart reciprocity, a conjecture of Armstrong (recently verified by Johnson) that the definitely many simultaneous (s; t)- cores have average size 1 24 (s - 1)(t - 1)(s+t+1), and that the subset of self-conjugate cores has the same average (first shown by Chen{Huang{Wang). We similarly prove a recent conjecture of Fayers that the average weighted by an inverse stabilizer| giving the \expected size of the t-core of a random s-core"|is 1 24 (s - 1)(t2 - 1). We also prove Fayers' conjecture that the analogous self-conjugate average is the same if t is odd, but instead 1 24 (s - 1)(t2 + 2) if t is even. In principle, our explicit methods|or implicit variants thereof|extend to averages of arbitrary powers. The main new observation is that the stabilizers appearing in Fayers' conjectures have simple formulas in Johnson's z-coordinates parameterization of (s; t)-cores. We also observe that the z-coordinates extend to parameterize general t-cores. As an example application with t := s+d, we count the number of (s; s+d; s+2d)- cores for coprime s; d > 1, verifying a recent conjecture of Amdeberhan and Leven.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/103038
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Electronic Journal of Combinatorics
Publisher
European Mathematical Information Service (EMIS)
Citation
Wang, Victor Y. "Simultaneous Core Partitions: Parameterizations and Sums." Electronic Journal of Combinatorics 23(1) (2016), p.1-4.
Version: Final published version
ISSN
1097-1440
1077-8926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.