Show simple item record

dc.contributor.authorZhu, Yangying
dc.contributor.authorAntao, Dion Savio
dc.contributor.authorChu, Kuang-Han
dc.contributor.authorChen, Siyu
dc.contributor.authorHendricks, Terry J.
dc.contributor.authorZhang, Tiejun
dc.contributor.authorWang, Evelyn N.
dc.date.accessioned2016-06-08T16:07:59Z
dc.date.available2016-06-08T16:07:59Z
dc.date.issued2016-05
dc.date.submitted2016-03
dc.identifier.issn0022-1481
dc.identifier.urihttp://hdl.handle.net/1721.1/103058
dc.description.abstractWe investigated the role of surface microstructures in two-phase microchannels on suppressing flow instabilities and enhancing heat transfer. We designed and fabricated microchannels with well-defined silicon micropillar arrays on the bottom heated microchannel wall to promote capillary flow for thin film evaporation while facilitating nucleation only from the sidewalls. Our experimental results show significantly reduced temperature and pressure drop fluctuation especially at high heat fluxes. A critical heat flux (CHF) of 969 W/cm2 was achieved with a structured surface, a 57% enhancement compared to a smooth surface. We explain the experimental trends for the CHF enhancement with a liquid wicking model. The results suggest that capillary flow can be maximized to enhance heat transfer via optimizing the microstructure geometry for the development of high performance two-phase microchannel heat sinks.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-15-1-2483)en_US
dc.description.sponsorshipMasdar Institute of Science & Technology - MIT Technology & Development Program (Cooperative agreement, Reference 02/MI/MI/CP/11/07633/GEN/G/00)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipBattelle Memorial Instituteen_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology (SMART)en_US
dc.language.isoen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1115/1.4033497en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSurface Structure Enhanced Microchannel Flow Boilingen_US
dc.typeArticleen_US
dc.identifier.citationZhu, Yangying, Dion S. Antao, Kuang-Han Chu, Siyu Chen, Terry J. Hendricks, Tiejun Zhang, and Evelyn N. Wang. “Surface Structure Enhanced Microchannel Flow Boiling.” Journal of Heat Transfer 138, no. 9 (May 17, 2016): 091501.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverWang, Evelyn, N.en_US
dc.contributor.mitauthorZhu, Yangyingen_US
dc.contributor.mitauthorAntao, Dion Savioen_US
dc.contributor.mitauthorChu, Kuang-Hanen_US
dc.contributor.mitauthorChen, Siyuen_US
dc.contributor.mitauthorZhang, Tiejunen_US
dc.contributor.mitauthorWang, Evelyn N.en_US
dc.relation.journalJournal of Heat Transferen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhu, Yangying; Antao, Dion S.; Chu, Kuang-Han; Chen, Siyu; Hendricks, Terry J.; Zhang, Tiejun; Wang, Evelyn N.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9185-3161
dc.identifier.orcidhttps://orcid.org/0000-0003-4165-4732
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record