Show simple item record

dc.contributor.authorBouman, Katherine L.
dc.contributor.authorJohnson, Michael D.
dc.contributor.authorZoran, Daniel
dc.contributor.authorFish, Vincent L.
dc.contributor.authorDoeleman, Sheperd Samuel
dc.contributor.authorFreeman, William T.
dc.date.accessioned2016-06-09T14:40:46Z
dc.date.available2016-06-09T14:40:46Z
dc.date.issued2016-06
dc.identifier.urihttp://hdl.handle.net/1721.1/103077
dc.description.abstractVery long baseline interferometry (VLBI) is a technique for imaging celestial radio emissions by simultaneously observing a source from telescopes distributed across Earth. The challenges in reconstructing images from fine angular resolution VLBI data are immense. The data is extremely sparse and noisy, thus requiring statistical image models such as those designed in the computer vision community. In this paper we present a novel Bayesian approach for VLBI image reconstruction. While other methods often require careful tuning and parameter selection for different types of data, our method (CHIRP) produces good results under different settings such as low SNR or extended emission. The success of our method is demonstrated on realistic synthetic experiments as well as publicly available real data. We present this problem in a way that is accessible to members of the community, and provide a dataset website (vlbiimaging.csail.mit.edu) that facilitates controlled comparisons across algorithm.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CGV-1111415)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AST-1310896)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AST-1211539)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AST-1440254)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (GBMF-3561)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://cvpr2016.thecvf.com/program/main_conferenceen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceBoumanen_US
dc.titleComputational Imaging for VLBI Image Reconstructionen_US
dc.typeArticleen_US
dc.identifier.citationBouman, Katherine L., Michael D. Johnson, Daniel Zoran, Vincent L. Fish, Sheperd S. Doeleman, and William T. Freeman. "Computational Imaging for VLBI Image Reconstruction." 2016 IEEE Conference on Computer Vision and Pattern Recognition (June 2016).en_US
dc.contributor.departmentHaystack Observatoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverBouman, Katherine L.en_US
dc.contributor.mitauthorBouman, Katherine L.en_US
dc.contributor.mitauthorZoran, Danielen_US
dc.contributor.mitauthorFish, Vincent L.en_US
dc.contributor.mitauthorDoeleman, Sheperd Samuelen_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalProceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognitionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBouman, Katherine L.; Johnson, Michael D.; Zoran, Daniel; Fish, Vincent L.; Doeleman, Sheperd S.; Freeman, William T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4988-9771
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dc.identifier.orcidhttps://orcid.org/0000-0003-0077-4367
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record