Show simple item record

dc.contributor.authorGupta, Vishal
dc.contributor.authorPaschalidis, Ioannis Ch.
dc.contributor.authorBertsimas, Dimitris J
dc.date.accessioned2016-06-14T14:25:31Z
dc.date.available2016-06-14T14:25:31Z
dc.date.issued2014-09
dc.date.submitted2012-11
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/103099
dc.description.abstractEquilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and nonparametric estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-10-1-0952)en_US
dc.description.sponsorshipUnited States. Army Research Office (grant W911NF-11-1-0227)en_US
dc.description.sponsorshipUnited States. Army Research Office (grant W911NF-12-1-0390)en_US
dc.description.sponsorshipCitigroup (Firm)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (DOE grant DE-FG52-06NA27490)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant IIS-1237022)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CNS-1239021)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant EFRI-0735974)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-014-0819-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleData-driven estimation in equilibrium using inverse optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Vishal Gupta, and Ioannis Ch. Paschalidis. "Data-driven estimation in equilibrium using inverse optimization." Mathematical Programming 153:2 (November 2015), pp 595-633.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorBertsimas, Dimitris J.en_US
dc.contributor.mitauthorGupta, Vishalen_US
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:11:17Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsBertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record