Show simple item record

dc.contributor.authorCartas Ayala, Marco Aurelio
dc.contributor.authorKarnik, Rohit
dc.date.accessioned2016-06-14T15:41:24Z
dc.date.available2016-06-14T15:41:24Z
dc.date.issued2013-12
dc.date.submitted2013-04
dc.identifier.issn1613-4982
dc.identifier.issn1613-4990
dc.identifier.urihttp://hdl.handle.net/1721.1/103104
dc.description.abstractThe ability to control the flow of particles (e.g., droplets and cells) in microfluidic environments can enable new methods for synthesis of biomaterials (Mann and Ozin in Nature 382:313–318, 1996), biocharacterization, and medical diagnosis (Pipper et al. in Nat Med 13:1259–1263, 2007). Understanding the factors that affect the particle passage can improve the control over the particles’ flow through microchannels (Vanapalli et al. in Lab Chip 9:982, 2009). The first step to understand the particle passage is to measure the resulting flow rate, induced pressure drop across the channel, and other parameters. Flow rates and pressure drops during passage of a particle through microchannels are typically measured using microfluidic comparators. Since the first microfluidic comparators were reported, a few design factors have been explored experimentally and theoretically, e.g., sensitivity (Vanapalli et al. in Appl Phys Lett 90:114109, 2007). Nevertheless, there is still a gap in the understanding of the temporal and spatial resolution limits of microfluidic comparators. Here we explore, theoretically and experimentally, the factors that affect the spatial and temporal resolution. We determined that the comparator sensitivity is defined by the device geometry adjacent and upstream the measuring point in the comparator. Further, we determined that, in order of importance, the temporal resolution is limited by the convective timescale, capacitive timescale due to channel expansion, and unsteady timescale due to the flow inertia. Finally, we explored the flow velocity limits by characterizing the transition between low to moderate Reynolds numbers (Re <<1 to Re ~ 50). The present work can guide the design of microfluidic comparators and clarify the limits of this technique.en_US
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (Mexico) (CONACYT grant 205899)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10404-013-1302-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleTime limitations and geometrical parameters in the design of microfluidic comparatorsen_US
dc.typeArticleen_US
dc.identifier.citationCartas-Ayala, Marco A., and Rohit Karnik. “Time Limitations and Geometrical Parameters in the Design of Microfluidic Comparators.” Microfluid Nanofluid 17, no. 2 (December 11, 2013): 359–373.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorCartas Ayala, Marco Aurelioen_US
dc.contributor.mitauthorKarnik, Rohiten_US
dc.relation.journalMicrofluidics and Nanofluidicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:11:51Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsCartas-Ayala, Marco A.; Karnik, Rohiten_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-0588-9286
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record