Show simple item record

dc.contributor.authorDankwa, Selasi
dc.contributor.authorLim, Caeul
dc.contributor.authorBei, Amy K.
dc.contributor.authorJiang, Rays H. Y.
dc.contributor.authorAbshire, James Robbins
dc.contributor.authorPatel, Saurabh D.
dc.contributor.authorGoldberg, Jonathan M.
dc.contributor.authorMoreno, Yovany
dc.contributor.authorKono, Maya
dc.contributor.authorNiles, Jacquin C.
dc.contributor.authorDuraisingh, Manoj T.
dc.date.accessioned2016-06-16T19:27:14Z
dc.date.available2016-06-16T19:27:14Z
dc.date.issued2016-04
dc.date.submitted2015-08
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/103124
dc.description.abstractPlasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant AI091787)en_US
dc.description.sponsorshipCenters for Disease Control and Prevention (U.S.) (grant (R36-CK000119-01))en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Epidemiology of Infectious Disease and Biodefense Training Grant, 2-T32-AI007535-12)en_US
dc.language.isoen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms11187en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleAncient human sialic acid variant restricts an emerging zoonotic malaria parasiteen_US
dc.typeArticleen_US
dc.identifier.citationDankwa, Selasi, Caeul Lim, Amy K. Bei, Rays H. Y. Jiang, James R. Abshire, Saurabh D. Patel, Jonathan M. Goldberg, et al. “Ancient Human Sialic Acid Variant Restricts an Emerging Zoonotic Malaria Parasite.” Nat Comms 7 (April 4, 2016): 11187.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorAbshire, James Robbinsen_US
dc.contributor.mitauthorNiles, Jacquin C.en_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6250-8796
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record