Show simple item record

dc.contributor.authorHaydys, Andriy
dc.contributor.authorWalpuski, Thomas
dc.date.accessioned2016-06-17T21:41:32Z
dc.date.available2017-03-01T16:14:48Z
dc.date.issued2015-11
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/103153
dc.description.abstractWe prove that a sequence of solutions of the Seiberg–Witten equation with multiple spinors in dimension three can degenerate only by converging (after rescaling) to a Fueter section of a bundle of moduli spaces of ASD instantons.en_US
dc.description.sponsorshipEuropean Research Council (Grant 247331)en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-015-0346-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleA compactness theorem for the Seiberg–Witten equation with multiple spinors in dimension threeen_US
dc.typeArticleen_US
dc.identifier.citationHaydys, Andriy, and Thomas Walpuski. “A Compactness Theorem for the Seiberg–Witten Equation with Multiple Spinors in Dimension Three.” Geometric and Functional Analysis 25, no. 6 (November 25, 2015): 1799–1821.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorWalpuski, Thomasen_US
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:12:47Z
dc.language.rfc3066en
dc.rights.holderSpringer International Publishing
dspace.orderedauthorsHaydys, Andriy; Walpuski, Thomasen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-2705-3423
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record