Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology
Author(s)
Oman, Charles M.; Cullen, Kathleen E.
Download221_2014_3973_ReferencePDF.pdf (693.5Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The origin of the internal “sensory conflict” stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input (“reafference”) to these neurons are canceled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model—presumably located in the cerebellum) with the actual sensory feedback. The un-canceled component (“exafference”) resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular “sensory conflict” neurons had been postulated as early as 1982, but their existence and putative role in posture control and motion sickness have been long debated. Here, we review the development of “sensory conflict” theories in relation to recent evidence for brainstem and cerebellar reafference cancelation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulate nearby brainstem emetic centers—via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness.
Date issued
2014-05Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
Experimental Brain Research
Publisher
Springer Berlin Heidelberg
Citation
Oman, Charles M., and Kathleen E. Cullen. “Brainstem Processing of Vestibular Sensory Exafference: Implications for Motion Sickness Etiology.” Experimental Brain Research 232, no. 8 (May 18, 2014): 2483–2492.
Version: Author's final manuscript
ISSN
0014-4819
1432-1106