MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation

Author(s)
Eftang, Jens Lohne; Patera, Anthony T.
Thumbnail
Download40323_2013_Article_10.pdf (3.443Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background: We consider a static condensation reduced basis element framework for efficient approximation of parameter-dependent linear elliptic partial differential equations in large three-dimensional component-based domains. The approach features an offline computational stage in which a library of interoperable parametrized components is prepared; and an online computational stage in which these component archetypes may be instantiated and connected through predefined ports to form a global synthesized system. Thanks to the component-interior reduced basis approximations, the online computation time is often relatively small compared to a classical finite element calculation. Methods: In addition to reduced basis approximation in the component interiors, we employ in this paper port reduction with empirical port modes to reduce the number of degrees of freedom on the ports and thus the size of the Schur complement system. The framework is equipped with efficiently computable a posteriori error estimators that provide asymptotically rigorous bounds on the error in the approximation with respect to the underlying finite element discretization. We extend our earlier approach for two-dimensional scalar problems to the more demanding three-dimensional vector-field case. Results and Conclusions: This paper focuses on linear elasticity analysis for large structures with tens of millions of finite element degrees of freedom. Through our procedure we effectively reduce the number of degrees of freedom to a few thousand, and we demonstrate through extensive numerical results for a microtruss structure that our approach provides an accurate, rapid, and a posteriori verifiable approximation for relevant large-scale engineering problems.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/103178
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Advanced Modeling and Simulation in Engineering Sciences
Publisher
Springer International Publishing
Citation
Eftang, Jens L., and Anthony T. Patera. “A Port-Reduced Static Condensation Reduced Basis Element Method for Large Component-Synthesized Structures: Approximation and A Posteriori Error Estimation.” Adv Model Simul Eng Sci 1, no. 1 (2014): 3.
Version: Final published version
ISSN
2213-7467

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.