Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres
Author(s)
Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J; ... Show more Show less
DownloadLin-2015-Predictive modelling.pdf (5.119Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.
Date issued
2015-05Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular MechanicsJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Lin, Shangchao, Seunghwa Ryu, Olena Tokareva, Greta Gronau, Matthew M. Jacobsen, Wenwen Huang, Daniel J. Rizzo, David Li, Cristian Staii, Nicola M. Pugno, Joyce Y. Wong, David L. Kaplan, and Markus J. Buehler. “Predictive Modelling-Based Design and Experiments for Synthesis and Spinning of Bioinspired Silk Fibres.” Nat Comms 6 (May 28, 2015): 6892.
Version: Final published version
ISSN
2041-1723