Electromagnetic excitation of particle suspensions in hydraulic fractures using a coupled lattice Boltzmann-discrete element model
Author(s)
McCullough, Jon W. S.; Williams, John R.; Leonardi, Christopher Ross; Jones, Bruce David
Download40571_2015_35_ReferencePDF.pdf (500.5Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
This paper describes the development of a computational framework that can be used to describe the electromagnetic excitation of rigid, spherical particles in suspension. In this model the mechanical interaction and kinematic behaviour of the particles is modelled using the discrete element method, while the surrounding fluid mechanics is modelled using the lattice Boltzmann method. Electromagnetic effects are applied to the particles as an additional set of discrete element forces, and the implementation of these effects was validated by comparison to the theoretical equations of point charges for Coulomb’s law and the Lorentz force equation. Oscillating single and multiple particle tests are used to investigate the sensitivity of particle excitation to variations in particle charge, field strength, and frequency. The further capabilities of the model are then demonstrated by a numerical illustration, in which a hydraulic fracture fluid is excited and monitored within a hydraulic fracture. This modelling explores the feasibility of using particle vibrations within the fracture fluid to aid in the monitoring of fracture propagation in unconventional gas reservoirs.
Date issued
2015-05Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Computational Particle Mechanics
Publisher
Springer International Publishing
Citation
Leonardi, Christopher R. et al. “Electromagnetic Excitation of Particle Suspensions in Hydraulic Fractures Using a Coupled Lattice Boltzmann-Discrete Element Model.” Computational Particle Mechanics 3.2 (2016): 125–140.
Version: Author's final manuscript
ISSN
2196-4378
2196-4386