MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of the SPH method to solitary wave impact on an offshore platform

Author(s)
Thyagarajan, A.; IJzermans, R. H. A.; van Beest, B. W. H.; Pan, Kai; Williams, John R.; Jones, Bruce David; ... Show more Show less
Thumbnail
Download40571_2015_69_ReferencePDF.pdf (7.185Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper investigates the interaction between large waves and floating offshore structures. Here, the fluid–structure interaction is considered using the weakly compressible smoothed particle hydrodynamics (SPH) method. To ensure the applicability of this method, we validate its prediction for fluid forces and rigid-body motion against two sets of experimental data. These are impact due to dam break, and wave induced motion of a floating cube. For the dam break problem, the SPH method is used to predict impact forces on a rectangular column located downstream. In the second case of a floating cube, the SPH method simulates the motion of a buoyant cube under the action of induced waves, where a wall placed upstream of the cube is displaced sinusoidally to induce waves. In both cases, the SPH framework implemented is able to accurately reproduce the experimental results. Following validation, we apply this framework to simulation of a toy model of a tension-leg platform upon impact of a large solitary wave. This analysis shows that the platform may be pulled into the water by stretched tension legs, where the extension of the tension legs also governs the rotational behavior of the platform. The result also indicates that a tension-leg platform is very unlikely to topple over during the arrival of an extreme wave.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/103305
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Computational Particle Mechanics
Publisher
Springer International Publishing
Citation
Pan, K. et al. “Application of the SPH Method to Solitary Wave Impact on an Offshore Platform.” Computational Particle Mechanics 3.2 (2016): 155–166.
Version: Author's final manuscript
ISSN
2196-4378
2196-4386

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.