Show simple item record

dc.contributor.authorLloyd, Seth
dc.contributor.authorDreyer, Olaf
dc.date.accessioned2016-06-23T22:08:39Z
dc.date.available2017-03-01T16:14:48Z
dc.date.issued2015-12
dc.date.submitted2015-02
dc.identifier.issn1570-0755
dc.identifier.issn1573-1332
dc.identifier.urihttp://hdl.handle.net/1721.1/103313
dc.description.abstractPath integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.en_US
dc.description.sponsorshipW. M. Keck Foundation Center for Extreme Quantum Information Theoryen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.description.sponsorshipUnited States. Army Research Office. Multidisciplinary University Research Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipMIT Energy Initiativeen_US
dc.description.sponsorshipEni S.p.A. (Firm)en_US
dc.description.sponsorshipLockheed Martinen_US
dc.description.sponsorshipFoundational Questions Institute (FQXi)en_US
dc.description.sponsorshipJeffrey Epsteinen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11128-015-1178-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleThe universal path integralen_US
dc.typeArticleen_US
dc.identifier.citationLloyd, Seth, and Olaf Dreyer. “The Universal Path Integral.” Quantum Information Processing 15, no. 2 (December 10, 2015): 959–967.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalQuantum Information Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:17:23Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsLloyd, Seth; Dreyer, Olafen_US
dspace.embargo.termsNen
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record