dc.contributor.author | Raviv, Dan | |
dc.contributor.author | Kimmel, Ron | |
dc.date.accessioned | 2016-06-24T18:30:36Z | |
dc.date.available | 2016-06-24T18:30:36Z | |
dc.date.issued | 2014-06 | |
dc.date.submitted | 2012-02 | |
dc.identifier.issn | 0920-5691 | |
dc.identifier.issn | 1573-1405 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/103333 | |
dc.description.abstract | Shape recognition deals with the study geometric structures. Modern surface processing methods can cope with non-rigidity—by measuring the lack of isometry, deal with similarity or scaling—by multiplying the Euclidean arc-length by the Gaussian curvature, and manage equi-affine transformations—by resorting to the special affine arc-length definition in classical equi-affine differential geometry. Here, we propose a computational framework that is invariant to the full affine group of transformations (similarity and equi-affine). Thus, by construction, it can handle non-rigid shapes. Technically, we add the similarity invariant property to an equi-affine invariant one and establish an affine invariant pseudo-metric. As an example, we show how diffusion geometry can encapsulate the proposed measure to provide robust signatures and other analysis tools for affine invariant surface matching and comparison. | en_US |
dc.description.sponsorship | United States. Office of Naval Research (award N00014-12-1-0517) | en_US |
dc.description.sponsorship | Israel Science Foundation (Grant Number 1031/120 | en_US |
dc.publisher | Springer US | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s11263-014-0728-2 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer US | en_US |
dc.title | Affine Invariant Geometry for Non-rigid Shapes | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Raviv, Dan, and Ron Kimmel. “Affine Invariant Geometry for Non-Rigid Shapes.” Int J Comput Vis 111, no. 1 (June 14, 2014): 1–11. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Media Laboratory | en_US |
dc.contributor.mitauthor | Raviv, Dan | en_US |
dc.relation.journal | International Journal of Computer Vision | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-05-23T12:14:36Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Science+Business Media New York | |
dspace.orderedauthors | Raviv, Dan; Kimmel, Ron | en_US |
dspace.embargo.terms | N | en |
dc.identifier.orcid | https://orcid.org/0000-0003-3254-2050 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |