Show simple item record

dc.contributor.authorTsoukalas, A.
dc.contributor.authorMitsos, A.
dc.contributor.authorMitsos, A
dc.date.accessioned2016-06-24T19:58:41Z
dc.date.available2016-06-24T19:58:41Z
dc.date.issued2014-04
dc.date.submitted2013-04
dc.identifier.issn0925-5001
dc.identifier.issn1573-2916
dc.identifier.urihttp://hdl.handle.net/1721.1/103338
dc.description.abstractMcCormick (Math Prog 10(1):147–175, 1976) provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form F ∘ f, where F is a univariate function. Herein, the composition theorem is generalized to allow multivariate outer functions F, and theory for the propagation of subgradients is presented. The generalization interprets the McCormick relaxation approach as a decomposition method for the auxiliary variable method. In addition to extending the framework, the new result provides a tool for the proof of relaxations of specific functions. Moreover, a direct consequence is an improved relaxation for the product of two functions, at least as tight as McCormick’s result, and often tighter. The result also allows the direct relaxation of multilinear products of functions. Furthermore, the composition result is applied to obtain improved convex underestimators for the minimum/maximum and the division of two functions for which current relaxations are often weak. These cases can be extended to allow composition of a variety of functions for which relaxations have been proposed.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10898-014-0176-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleMultivariate McCormick relaxationsen_US
dc.typeArticleen_US
dc.identifier.citationTsoukalas, A., and A. Mitsos. “Multivariate McCormick Relaxations.” J Glob Optim 59, no. 2–3 (April 2, 2014): 633–662. doi:10.1007/s10898-014-0176-0.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTsoukalas, A.en_US
dc.contributor.mitauthorMitsos, Aen_US
dc.relation.journalJournal of Global Optimizationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T09:38:41Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsTsoukalas, A.; Mitsos, A.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record