Show simple item record

dc.contributor.authorChetverikov, Denis
dc.contributor.authorKato, Kengo
dc.contributor.authorChernozhukov, Victor V
dc.date.accessioned2016-06-27T16:05:18Z
dc.date.available2016-06-27T16:05:18Z
dc.date.issued2014-05
dc.date.submitted2014-04
dc.identifier.issn0178-8051
dc.identifier.issn1432-2064
dc.identifier.urihttp://hdl.handle.net/1721.1/103354
dc.description.abstractSlepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit comparisons of expectations of smooth functions and distribution functions of maxima of Gaussian random vectors without any restriction on the covariance matrices. We also establish an anti-concentration inequality for the maximum of a Gaussian random vector, which derives a useful upper bound on the Lévy concentration function for the Gaussian maximum. The bound is dimension-free and applies to vectors with arbitrary covariance matrices. This anti-concentration inequality plays a crucial role in establishing bounds on the Kolmogorov distance between maxima of Gaussian random vectors. These results have immediate applications in mathematical statistics. As an example of application, we establish a conditional multiplier central limit theorem for maxima of sums of independent random vectors where the dimension of the vectors is possibly much larger than the sample size.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00440-014-0565-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleComparison and anti-concentration bounds for maxima of Gaussian random vectorsen_US
dc.typeArticleen_US
dc.identifier.citationChernozhukov, Victor, Denis Chetverikov, and Kengo Kato. “Comparison and Anti-Concentration Bounds for Maxima of Gaussian Random Vectors.” Probab. Theory Relat. Fields 162, no. 1-2 (May 9, 2014): 47–70.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.mitauthorChernozhukov, Victor V.en_US
dc.relation.journalProbability Theory and Related Fieldsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:10:39Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsChernozhukov, Victor; Chetverikov, Denis; Kato, Kengoen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record