MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Random Triangle Theory with Geometry and Applications

Author(s)
Edelman, Alan; Strang, Gilbert
Thumbnail
Download10208_2015_9250_ReferencePDF.pdf (1.346Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
What is the probability that a random triangle is acute? We explore this old question from a modern viewpoint, taking into account linear algebra, shape theory, numerical analysis, random matrix theory, the Hopf fibration, and much more. One of the best distributions of random triangles takes all six vertex coordinates as independent standard Gaussians. Six can be reduced to four by translation of the center to (0,0) or reformulation as a 2 × 2 random matrix problem. In this note, we develop shape theory in its historical context for a wide audience. We hope to encourage others to look again (and differently) at triangles. We provide a new constructive proof, using the geometry of parallelians, of a central result of shape theory: triangle shapes naturally fall on a hemisphere. We give several proofs of the key random result: that triangles are uniformly distributed when the normal distribution is transferred to the hemisphere. A new proof connects to the distribution of random condition numbers. Generalizing to higher dimensions, we obtain the “square root ellipticity statistic” of random matrix theory. Another proof connects the Hopf map to the SVD of 2 × 2 matrices. A new theorem describes three similar triangles hidden in the hemisphere. Many triangle properties are reformulated as matrix theorems, providing insight into both. This paper argues for a shift of viewpoint to the modern approaches of random matrix theory. As one example, we propose that the smallest singular value is an effective test for uniformity. New software is developed, and applications are proposed.
Date issued
2015-03
URI
http://hdl.handle.net/1721.1/103361
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Foundations of Computational Mathematics
Publisher
Springer US
Citation
Edelman, Alan, and Gilbert Strang. "Random Triangle Theory with Geometry and Applications." Foundations of Computational Mathematics 15:3 (2015), pp.681-713.
Version: Author's final manuscript
ISSN
1615-3375
1615-3383

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.