Show simple item record

dc.contributor.authorBogomolov, Andrey
dc.contributor.authorLepri, Bruno
dc.contributor.authorLarcher, Roberto
dc.contributor.authorAntonelli, Fabrizio
dc.contributor.authorPianesi, Fabio
dc.contributor.authorPentland, Alex Paul
dc.date.accessioned2016-06-27T20:17:32Z
dc.date.available2016-06-27T20:17:32Z
dc.date.issued2016-03
dc.date.submitted2015-11
dc.identifier.issn2193-1127
dc.identifier.urihttp://hdl.handle.net/1721.1/103363
dc.description.abstractEnergy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increasing scarcity of natural resources, the accelerating pollution of the environment, and the looming threat of global climate change. In this paper we introduce a new and original approach to predict next week energy consumption based on human dynamics analysis derived out of the anonymized and aggregated telecom data, which is processed from GSM network call data records (CDRs). We introduce an original problem statement, analyze regularities of the source data, provide insight on the original feature extraction method and discuss peculiarities of the regression models applicable for this big data problem. The proposed solution could act on energy producers/distributors as an essential aid to smart meters data for making better decisions in reducing total primary energy consumption by limiting energy production when the demand is not predicted, reducing energy distribution costs by efficient buy-side planning in time and providing insights for peak load planning in geographic space.en_US
dc.description.sponsorshipTelecom Italia SpAen_US
dc.description.sponsorshipSET Distribuzione SpAen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1140/epjds/s13688-016-0075-3en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEnergy consumption prediction using people dynamics derived from cellular network dataen_US
dc.typeArticleen_US
dc.identifier.citationBogomolov, Andrey, Bruno Lepri, Roberto Larcher, Fabrizio Antonelli, Fabio Pianesi, and Alex Pentland. "Energy consumption prediction using people dynamics derived from cellular network data." EPJ Data Science 5:13 (2016), pp.1-15.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorPentland, Alex Paulen_US
dc.relation.journalEPJ Data Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T09:38:09Z
dc.language.rfc3066en
dc.rights.holderBogomolov et al.
dspace.orderedauthorsBogomolov, Andrey; Lepri, Bruno; Larcher, Roberto; Antonelli, Fabrizio; Pianesi, Fabio; Pentland, Alexen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8053-9983
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record