Show simple item record

dc.contributor.authorRodriques, Samuel Gordon
dc.contributor.authorMarblestone, Adam Henry
dc.contributor.authorScholvin, Jorg
dc.contributor.authorDapello, Joel
dc.contributor.authorSarkar, Deblina
dc.contributor.authorMankin, Max
dc.contributor.authorGao, Ruixuan
dc.contributor.authorWood, Lowell
dc.contributor.authorBoyden, Edward Stuart
dc.date.accessioned2016-06-30T16:49:03Z
dc.date.available2016-06-30T16:49:03Z
dc.date.issued2016-05
dc.date.submitted2016-01
dc.identifier.issn1083-3668
dc.identifier.issn1560-2281
dc.identifier.urihttp://hdl.handle.net/1721.1/103386
dc.description.abstractWe introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.en_US
dc.description.sponsorshipHertz Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship Program)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Director’s Pioneer Award)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant 1U01MH106011)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant 1R24MH106075-01)en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/1.jbo.21.5.057003en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleMultiplexed neural recording along a single optical fiber via optical reflectometryen_US
dc.typeArticleen_US
dc.identifier.citationRodriques, Samuel G., Adam H. Marblestone, Jorg Scholvin, Joel Dapello, Deblina Sarkar, Max Mankin, Ruixuan Gao, Lowell Wood, and Edward S. Boyden. “Multiplexed Neural Recording Along a Single Optical Fiber via Optical Reflectometry.” Journal of Biomedical Optics 21, no. 5 (May 19, 2016): 057003.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorRodriques, Samuel Gordonen_US
dc.contributor.mitauthorMarblestone, Adam Henryen_US
dc.contributor.mitauthorScholvin, Jorgen_US
dc.contributor.mitauthorDapello, Joelen_US
dc.contributor.mitauthorSarkar, Deblinaen_US
dc.contributor.mitauthorGao, Ruixuanen_US
dc.contributor.mitauthorBoyden, Edward Stuarten_US
dc.relation.journalJournal of Biomedical Opticsen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9662-1666
dc.identifier.orcidhttps://orcid.org/0000-0002-6574-097X
dc.identifier.orcidhttps://orcid.org/0000-0002-2509-0861
dc.identifier.orcidhttps://orcid.org/0000-0002-0419-3351
dc.identifier.orcidhttps://orcid.org/0000-0003-4167-440X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record