MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An exact combinatorial algorithm for minimum graph bisection

Author(s)
Delling, Daniel; Fleischman, Daniel; Goldberg, Andrew V.; Razenshteyn, Ilya; Werneck, Renato F.
Thumbnail
Download10107_2014_811_ReferencePDF.pdf (1.375Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a novel exact algorithm for the minimum graph bisection problem, whose goal is to partition a graph into two equally-sized cells while minimizing the number of edges between them. Our algorithm is based on the branch-and-bound framework and, unlike most previous approaches, it is fully combinatorial. We introduce novel lower bounds based on packing trees, as well as a new decomposition technique that contracts entire regions of the graph while preserving optimality guarantees. Our algorithm works particularly well on graphs with relatively small minimum bisections, solving to optimality several large real-world instances (with up to millions of vertices) for the first time.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/103396
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Mathematical Programming
Publisher
Springer Berlin Heidelberg
Citation
Delling, Daniel, Daniel Fleischman, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. “An Exact Combinatorial Algorithm for Minimum Graph Bisection.” Math. Program. 153, no. 2 (September 10, 2014): 417–458.
Version: Author's final manuscript
ISSN
0025-5610
1436-4646

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.