Show simple item record

dc.contributor.authorGoyal, Vineet
dc.contributor.authorLu, Brian Y.
dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorBertsimas, Dimitris J.
dc.date.accessioned2016-06-30T20:38:29Z
dc.date.available2016-06-30T20:38:29Z
dc.date.issued2014-04
dc.date.submitted2013-01
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/103403
dc.description.abstractIn this paper, we study the performance of static solutions for two-stage adjustable robust linear optimization problems with uncertain constraint and objective coefficients and give a tight characterization of the adaptivity gap. Computing an optimal adjustable robust optimization problem is often intractable since it requires to compute a solution for all possible realizations of uncertain parameters (Feige et al. in Lect Notes Comput Sci 4513:439–453, 2007). On the other hand, a static solution is a single (here and now) solution that is feasible for all possible realizations of the uncertain parameters and can be computed efficiently for most dynamic optimization problems. We show that for a fairly general class of uncertainty sets, a static solution is optimal for the two-stage adjustable robust linear packing problems. This is highly surprising in view of the usual perception about the conservativeness of static solutions. Furthermore, when a static solution is not optimal for the adjustable robust problem, we give a tight approximation bound on the performance of the static solution that is related to a measure of non-convexity of a transformation of the uncertainty set. We also show that our bound is at least as good (and in many case significantly better) as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in Math Methods Oper Res 77(3):323–343, 2013; Bertsimas et al. in Math Oper Res 36(1):24–54, 2011).en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-014-0768-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleA tight characterization of the performance of static solutions in two-stage adjustable robust linear optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Vineet Goyal, and Brian Y. Lu. “A Tight Characterization of the Performance of Static Solutions in Two-Stage Adjustable Robust Linear Optimization.” Mathematical Programming 150.2 (2015): 281–319.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorBertsimas, Dimitris J.en_US
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:11:03Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsBertsimas, Dimitris; Goyal, Vineet; Lu, Brian Y.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record