MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale event detection in social media

Author(s)
Dong, Xiaowen; Mavroeidis, Dimitrios; Calabrese, Francesco; Frossard, Pascal
Thumbnail
Download10618_2015_421_ReferencePDF.pdf (7.937Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Event detection has been one of the most important research topics in social media analysis. Most of the traditional approaches detect events based on fixed temporal and spatial resolutions, while in reality events of different scales usually occur simultaneously, namely, they span different intervals in time and space. In this paper, we propose a novel approach towards multiscale event detection using social media data, which takes into account different temporal and spatial scales of events in the data. Specifically, we explore the properties of the wavelet transform, which is a well-developed multiscale transform in signal processing, to enable automatic handling of the interaction between temporal and spatial scales. We then propose a novel algorithm to compute a data similarity graph at appropriate scales and detect events of different scales simultaneously by a single graph-based clustering process. Furthermore, we present spatiotemporal statistical analysis of the noisy information present in the data stream, which allows us to define a novel term-filtering procedure for the proposed event detection algorithm and helps us study its behavior using simulated noisy data. Experimental results on both synthetically generated data and real world data collected from Twitter demonstrate the meaningfulness and effectiveness of the proposed approach. Our framework further extends to numerous application domains that involve multiscale and multiresolution data analysis.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/103417
Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Data Mining and Knowledge Discovery
Publisher
Springer US
Citation
Dong, Xiaowen, Dimitrios Mavroeidis, Francesco Calabrese, and Pascal Frossard. “Multiscale Event Detection in Social Media.” Data Min Knowl Disc 29, no. 5 (June 13, 2015): 1374–1405.
Version: Author's final manuscript
ISSN
1384-5810
1573-756X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.