Show simple item record

dc.contributor.authorErtekin, Şeyda
dc.contributor.authorRudin, Cynthia
dc.contributor.authorHirsh, Haym
dc.contributor.authorErtekin, Seyda
dc.date.accessioned2016-07-01T17:52:39Z
dc.date.available2016-07-01T17:52:39Z
dc.date.issued2014-06
dc.date.submitted2013-02
dc.identifier.issn1384-5810
dc.identifier.issn1573-756X
dc.identifier.urihttp://hdl.handle.net/1721.1/103418
dc.description.abstractThe problem of “approximating the crowd” is that of estimating the crowd’s majority opinion by querying only a subset of it. Algorithms that approximate the crowd can intelligently stretch a limited budget for a crowdsourcing task. We present an algorithm, “CrowdSense,” that works in an online fashion where items come one at a time. CrowdSense dynamically samples subsets of the crowd based on an exploration/exploitation criterion. The algorithm produces a weighted combination of the subset’s votes that approximates the crowd’s opinion. We then introduce two variations of CrowdSense that make various distributional approximations to handle distinct crowd characteristics. In particular, the first algorithm makes a statistical independence approximation of the labelers for large crowds, whereas the second algorithm finds a lower bound on how often the current subcrowd agrees with the crowd’s majority vote. Our experiments on CrowdSense and several baselines demonstrate that we can reliably approximate the entire crowd’s vote by collecting opinions from a representative subset of the crowd.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10618-014-0354-1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleApproximating the crowden_US
dc.typeArticleen_US
dc.identifier.citationErtekin, Şeyda, Cynthia Rudin, and Haym Hirsh. “Approximating the Crowd.” Data Min Knowl Disc 28, no. 5–6 (June 14, 2014): 1189–1221.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Collective Intelligenceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorErtekin, Seydaen_US
dc.contributor.mitauthorRudin, Cynthiaen_US
dc.relation.journalData Mining and Knowledge Discoveryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:16:23Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsErtekin, Şeyda; Rudin, Cynthia; Hirsh, Haymen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-6541-1650
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record