dc.contributor.author | Veeramachaneni, Kalyan | |
dc.contributor.author | Arnaldo, Ignacio | |
dc.contributor.author | Derby, Owen | |
dc.contributor.author | O’Reilly, Una-May | |
dc.date.accessioned | 2016-07-01T20:33:34Z | |
dc.date.available | 2016-07-01T20:33:34Z | |
dc.date.issued | 2014-11 | |
dc.date.submitted | 2014-06 | |
dc.identifier.issn | 1570-7873 | |
dc.identifier.issn | 1572-9184 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/103516 | |
dc.description.abstract | We describe FlexGP, the first Genetic Programming system to perform symbolic regression on large-scale datasets on the cloud via massive data-parallel ensemble learning. FlexGP provides a decentralized, fault tolerant parallelization framework that runs many copies of Multiple Regression Genetic Programming, a sophisticated symbolic regression algorithm, on the cloud. Each copy executes with a different sample of the data and different parameters. The framework can create a fused model or ensemble on demand as the individual GP learners are evolving. We demonstrate our framework by deploying 100 independent GP instances in a massive data-parallel manner to learn from a dataset composed of 515K exemplars and 90 features, and by generating a competitive fused model in less than 10 minutes. | en_US |
dc.description.sponsorship | Li Ka Shing Foundation | en_US |
dc.description.sponsorship | GE Global Research Center | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10723-014-9320-9 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer Netherlands | en_US |
dc.title | FlexGP | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Veeramachaneni, Kalyan et al. “FlexGP: Cloud-Based Ensemble Learning with Genetic Programming for Large Regression Problems.” Journal of Grid Computing 13.3 (2015): 391–407. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Information and Decision Systems | en_US |
dc.contributor.mitauthor | Veeramachaneni, Kalyan | en_US |
dc.contributor.mitauthor | Arnaldo, Ignacio | en_US |
dc.contributor.mitauthor | Derby, Owen | en_US |
dc.contributor.mitauthor | O’Reilly, Una-May | en_US |
dc.relation.journal | Journal of Grid Computing | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-05-23T12:07:41Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Science+Business Media Dordrecht | |
dspace.orderedauthors | Veeramachaneni, Kalyan; Arnaldo, Ignacio; Derby, Owen; O’Reilly, Una-May | en_US |
dspace.embargo.terms | N | en |
dspace.mitauthor.error | true | |
mit.license | PUBLISHER_POLICY | en_US |