Show simple item record

dc.contributor.authorVeeramachaneni, Kalyan
dc.contributor.authorArnaldo, Ignacio
dc.contributor.authorDerby, Owen
dc.contributor.authorO’Reilly, Una-May
dc.date.accessioned2016-07-01T20:33:34Z
dc.date.available2016-07-01T20:33:34Z
dc.date.issued2014-11
dc.date.submitted2014-06
dc.identifier.issn1570-7873
dc.identifier.issn1572-9184
dc.identifier.urihttp://hdl.handle.net/1721.1/103516
dc.description.abstractWe describe FlexGP, the first Genetic Programming system to perform symbolic regression on large-scale datasets on the cloud via massive data-parallel ensemble learning. FlexGP provides a decentralized, fault tolerant parallelization framework that runs many copies of Multiple Regression Genetic Programming, a sophisticated symbolic regression algorithm, on the cloud. Each copy executes with a different sample of the data and different parameters. The framework can create a fused model or ensemble on demand as the individual GP learners are evolving. We demonstrate our framework by deploying 100 independent GP instances in a massive data-parallel manner to learn from a dataset composed of 515K exemplars and 90 features, and by generating a competitive fused model in less than 10 minutes.en_US
dc.description.sponsorshipLi Ka Shing Foundationen_US
dc.description.sponsorshipGE Global Research Centeren_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10723-014-9320-9en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Netherlandsen_US
dc.titleFlexGPen_US
dc.typeArticleen_US
dc.identifier.citationVeeramachaneni, Kalyan et al. “FlexGP: Cloud-Based Ensemble Learning with Genetic Programming for Large Regression Problems.” Journal of Grid Computing 13.3 (2015): 391–407.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorVeeramachaneni, Kalyanen_US
dc.contributor.mitauthorArnaldo, Ignacioen_US
dc.contributor.mitauthorDerby, Owenen_US
dc.contributor.mitauthorO’Reilly, Una-Mayen_US
dc.relation.journalJournal of Grid Computingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:07:41Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media Dordrecht
dspace.orderedauthorsVeeramachaneni, Kalyan; Arnaldo, Ignacio; Derby, Owen; O’Reilly, Una-Mayen_US
dspace.embargo.termsNen
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record