MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kernel density compression for real-time Bayesian encoding/decoding of unsorted hippocampal spikes

Author(s)
Sodkomkham, Danaipat; Ciliberti, Davide; Wilson, Matthew A.; Fukui, Ken-ichi; Moriyama, Koichi; Numao, Masayuki; Kloosterman, Fabian; ... Show more Show less
Thumbnail
DownloadWilson_Kernel density.pdf (2.076Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
To gain a better understanding of how neural ensembles communicate and process information, neural decoding algorithms are used to extract information encoded in their spiking activity. Bayesian decoding is one of the most used neural population decoding approaches to extract information from the ensemble spiking activity of rat hippocampal neurons. Recently it has been shown how Bayesian decoding can be implemented without the intermediate step of sorting spike waveforms into groups of single units. Here we extend the approach in order to make it suitable for online encoding/decoding scenarios that require real-time decoding such as brain-machine interfaces. We propose an online algorithm for the Bayesian decoding that reduces the time required for decoding neural populations, resulting in a real-time capable decoding framework. More specifically, we improve the speed of the probability density estimation step, which is the most essential and the most expensive computation of the spike-sorting-less decoding process, by developing a kernel density compression algorithm. In contrary to existing online kernel compression techniques, rather than optimizing for the minimum estimation error caused by kernels compression, the proposed method compresses kernels on the basis of the distance between the merging component and its most similar neighbor. Thus, without costly optimization, the proposed method has very low compression latency with a small and manageable estimation error. In addition, the proposed bandwidth matching method for Gaussian kernels merging has an interesting mathematical property whereby optimization in the estimation of the probability density function can be performed efficiently, resulting in a faster decoding speed. We successfully applied the proposed kernel compression algorithm to the Bayesian decoding framework to reconstruct positions of a freely moving rat from hippocampal unsorted spikes, with significant improvements in the decoding speed and acceptable decoding error.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/103531
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Knowledge-Based Systems
Publisher
Elsevier
Citation
Sodkomkham, Danaipat, Davide Cilibertib, Matthew A. Wilsond, Ken-ichi Fukuia, Koichi Moriyamaa, Masayuki Numaoa, and Fabian Kloosterman. "Kernel density compression for real-time Bayesian encoding/decoding of unsorted hippocampal spikes." Knowledge-Based Systems 94 (15 February 2016), pp.1-12.
Version: Final published version
ISSN
09507051

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.