MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isopropanol production with engineered Cupriavidus necator as bioproduction platform

Author(s)
Grousseau, Estelle; Lu, Jingnan; Gorret, Nathalie; Guillouet, Stéphane E.; Sinskey, Anthony J
Thumbnail
Download253_2014_5591_ReferencePDF.pdf (1.382Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Alleviating our society’s dependence on petroleum-based chemicals has been highly emphasized due to fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high potential to replace some petroleum-based chemicals, which can be produced through biological platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate [P(3HB)]. These synthetic production pathways were rationally designed through codon optimization, gene placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors toward isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes encoding a β-ketothiolase, a CoA-transferase, and codon-optimized Clostridium genes encoding an acetoacetate decarboxylase and an alcohol dehydrogenase produced up to 3.44 g l[superscript -1] isopropanol in batch culture, from fructose as a sole carbon source, with only 0.82 g l[superscript -1] of biomass. The intrinsic performance of this strain (maximum specific production rate 0.093 g g[superscript -1] h[superscript -1], yield 0.32 Cmole Cmole[superscript -1]) corresponded to more than 60 % of the respective theoretical performance. Moreover, the overall isopropanol production yield (0.24 Cmole Cmole[superscript -1]) and the overall specific productivity (0.044 g g[superscript -1] h[superscript -1]) were higher than the values reported in the literature to date for heterologously engineered isopropanol production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale-up production of isopropanol from various substrates in high cell density cultures.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/103592
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Engineering Systems Division
Journal
Applied Microbiology and Biotechnology
Publisher
Springer Berlin Heidelberg
Citation
Grousseau, Estelle, Jingnan Lu, Nathalie Gorret, Stéphane E. Guillouet, and Anthony J. Sinskey. “Isopropanol Production with Engineered Cupriavidus Necator as Bioproduction Platform.” Applied Microbiology and Biotechnology 98, no. 9 (March 7, 2014): 4277–4290.
Version: Author's final manuscript
ISSN
0175-7598
1432-0614

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.