Show simple item record

dc.contributor.authorRaviv, Dan
dc.contributor.authorBronstein, Alexander M.
dc.contributor.authorBronstein, Michael M.
dc.contributor.authorWaisman, Dan
dc.contributor.authorSochen, Nir
dc.contributor.authorKimmel, Ron
dc.date.accessioned2016-07-14T20:10:08Z
dc.date.available2016-07-14T20:10:08Z
dc.date.issued2013-10
dc.identifier.issn0924-9907
dc.identifier.issn1573-7683
dc.identifier.urihttp://hdl.handle.net/1721.1/103615
dc.description.abstractTraditional models of bendable surfaces are based on the exact or approximate invariance to deformations that do not tear or stretch the shape, leaving intact an intrinsic geometry associated with it. These geometries are typically defined using either the shortest path length (geodesic distance), or properties of heat diffusion (diffusion distance) on the surface. Both measures are implicitly derived from the metric induced by the ambient Euclidean space. In this paper, we depart from this restrictive assumption by observing that a different choice of the metric results in a richer set of geometric invariants. We apply equi-affine geometry for analyzing arbitrary shapes with positive Gaussian curvature. The potential of the proposed framework is explored in a range of applications such as shape matching and retrieval, symmetry detection, and computation of Voroni tessellation. We show that in some shape analysis tasks, equi-affine-invariant intrinsic geometries often outperform their Euclidean-based counterparts. We further explore the potential of this metric in facial anthropometry of newborns. We show that intrinsic properties of this homogeneous group are better captured using the equi-affine metric.en_US
dc.description.sponsorshipSeventh Framework Programme (European Commission) (grant agreement no. 267414)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10851-013-0467-yen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleEqui-affine Invariant Geometry for Shape Analysisen_US
dc.typeArticleen_US
dc.identifier.citationRaviv, Dan, Alexander M. Bronstein, Michael M. Bronstein, Dan Waisman, Nir Sochen, and Ron Kimmel. “Equi-Affine Invariant Geometry for Shape Analysis.” J Math Imaging Vis 50, no. 1–2 (October 2, 2013): 144–163.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorRaviv, Danen_US
dc.relation.journalJournal of Mathematical Imaging and Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:15:48Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsRaviv, Dan; Bronstein, Alexander M.; Bronstein, Michael M.; Waisman, Dan; Sochen, Nir; Kimmel, Ronen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3254-2050
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record