Show simple item record

dc.contributor.authorHong, Wesley T.
dc.contributor.authorStoerzinger, Kelsey A.
dc.contributor.authorCrumlin, Ethan J.
dc.contributor.authorMutoro, Eva
dc.contributor.authorJeen, Hyoungjeen
dc.contributor.authorLee, Ho Nyung
dc.contributor.authorShao-Horn, Yang
dc.date.accessioned2016-07-15T19:59:47Z
dc.date.available2017-03-01T16:14:49Z
dc.date.issued2016-02
dc.identifier.issn1022-5528
dc.identifier.issn1572-9028
dc.identifier.urihttp://hdl.handle.net/1721.1/103628
dc.description.abstractTransition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr[subscript 2]Co[subscript 2]O[subscript 5] (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La[subscript 0.8]Sr[subscript 0.2]Co[subscript O3−δ] thin films by SCO surface particles observed previously.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) ( award number DMR-0819762)en_US
dc.description.sponsorshipMIT Skoltech Initiativeen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11244-015-0532-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleNear-Ambient Pressure XPS of High-Temperature Surface Chemistry in Sr2Co2O5 Thin Filmsen_US
dc.typeArticleen_US
dc.identifier.citationHong, Wesley T., Kelsey A. Stoerzinger, Ethan J. Crumlin, Eva Mutoro, Hyoungjeen Jeen, Ho Nyung Lee, and Yang Shao-Horn. “Near-Ambient Pressure XPS of High-Temperature Surface Chemistry in Sr2Co2O5 Thin Films.” Top Catal 59, no. 5–7 (February 11, 2016): 574–582.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorShao-Horn, Yangen_US
dc.contributor.mitauthorHong, Wesley T.en_US
dc.contributor.mitauthorStoerzinger, Kelsey A.en_US
dc.relation.journalTopics in Catalysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:16:00Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsHong, Wesley T.; Stoerzinger, Kelsey A.; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoungjeen; Lee, Ho Nyung; Shao-Horn, Yangen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-1560-0749
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record