MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

nanoSQUID operation using kinetic rather than magnetic induction

Author(s)
McCaughan, Adam N.; Zhao, Qingyuan; Berggren, Karl K.
Thumbnail
DownloadnanoSQUID operation.pdf (952.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We report on a method of nanoSQUID modulation which uses kinetic inductance rather than magnetic inductance to manip-ulate the internal fluxoid state. We produced modulation using injected current rather than an applied magnetic field. Using this injected current, we were able to observe the triangle-wave shaped modulation of the device critical current which was periodic according to the London fluxoid quantization condition. The measurement results also confirmed that the fluxoid state inside a superconducting loop can be manipulated using primarily kinetic inductance. By using primarily kinetic inductance rather than magnetic inductance, the size of the coupling inductor was reduced by a factor of 10. As a result, this approach may provide a means to reduce the size of SQUID-based superconducting electronics. Additionally, this method provides a convenient way to perform kinetic inductance characterizations of superconducting thin films.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/103767
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Scientific Reports
Publisher
Springer Nature
Citation
McCaughan, Adam N., Qingyuan Zhao, and Karl K. Berggren. "nanoSQUID operation using kinetic rather than magnetic induction." Scienctific Reports 6, Article number: 28095 (2016).p.1-4.
Version: Final published version
ISSN
2045-2322

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.