Show simple item record

dc.contributor.authorHopkins, Samuel Francis
dc.contributor.authorWeiler, Morgan
dc.date.accessioned2016-07-20T15:29:38Z
dc.date.available2016-07-20T15:29:38Z
dc.date.issued2015-08
dc.date.submitted2012-08
dc.identifier.issn0167-8094
dc.identifier.issn1572-9273
dc.identifier.urihttp://hdl.handle.net/1721.1/103772
dc.description.abstractWe extend the concept of pattern avoidance in permutations on a totally ordered set to pattern avoidance in permutations on partially ordered sets. The number of permutations on P that avoid the pattern p is denoted A v P (p). We extend a proof of Simion and Schmidt to show that A v P (132)=A v P (123) for any poset P, and we exactly classify the posets for which equality holds.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant 1004624)en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11083-015-9367-7en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Netherlandsen_US
dc.titlePattern Avoidance in Poset Permutationsen_US
dc.typeArticleen_US
dc.identifier.citationHopkins, Sam, and Morgan Weiler. “Pattern Avoidance in Poset Permutations.” Order 33, no. 2 (August 13, 2015): 299–310.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorHopkins, Samuel Francisen_US
dc.relation.journalOrderen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-06-30T12:07:19Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media Dordrecht
dspace.orderedauthorsHopkins, Sam; Weiler, Morganen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0985-4788
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record