dc.contributor.author | Taylor, Sara Ann | |
dc.contributor.author | Jaques, Natasha Mary | |
dc.contributor.author | Chen, Weixuan | |
dc.contributor.author | Fedor, Szymon | |
dc.contributor.author | Sano, Akane | |
dc.contributor.author | Picard, Rosalind W. | |
dc.date.accessioned | 2016-07-20T19:07:13Z | |
dc.date.available | 2016-07-20T19:07:13Z | |
dc.date.issued | 2015-08 | |
dc.identifier.isbn | 978-1-4244-9271-8 | |
dc.identifier.other | INSPEC Accession Number: 15584636 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/103781 | |
dc.description.abstract | Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection. | en_US |
dc.description.sponsorship | MIT Media Lab Consortium | en_US |
dc.description.sponsorship | Samsung (Firm) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIH grant R01GM105018) | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada | en_US |
dc.description.sponsorship | Seventh Framework Programme (European Commission) (People Programme (Marie Curie Actions), FP7/2007-2013/ under REA grant agreement #327702) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/EMBC.2015.7318762 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Automatic identification of artifacts in electrodermal activity data | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Taylor, Sara, Natasha Jaques, Weixuan Chen, Szymon Fedor, Akane Sano, and Rosalind Picard. “Automatic Identification of Artifacts in Electrodermal Activity Data.” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (August 2015), 25-29 Aug. 2015, Milan, Italy. pp.1934-1937. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Media Laboratory | en_US |
dc.contributor.department | Program in Media Arts and Sciences (Massachusetts Institute of Technology) | en_US |
dc.contributor.mitauthor | Taylor, Sara Ann | en_US |
dc.contributor.mitauthor | Jaques, Natasha Mary | en_US |
dc.contributor.mitauthor | Chen, Weixuan | en_US |
dc.contributor.mitauthor | Fedor, Szymon | en_US |
dc.contributor.mitauthor | Sano, Akane | en_US |
dc.contributor.mitauthor | Picard, Rosalind W. | en_US |
dc.relation.journal | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Taylor, Sara; Jaques, Natasha; Weixuan Chen, Natasha; Fedor, Szymon; Sano, Akane; Picard, Rosalind | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-9550-2553 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8413-9469 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4484-8946 | |
dc.identifier.orcid | https://orcid.org/0000-0002-5661-0022 | |
dc.identifier.orcid | https://orcid.org/0000-0002-9857-0188 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4133-9230 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |