Show simple item record

dc.contributor.authorTaylor, Sara Ann
dc.contributor.authorJaques, Natasha Mary
dc.contributor.authorChen, Weixuan
dc.contributor.authorFedor, Szymon
dc.contributor.authorSano, Akane
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2016-07-20T19:07:13Z
dc.date.available2016-07-20T19:07:13Z
dc.date.issued2015-08
dc.identifier.isbn978-1-4244-9271-8
dc.identifier.otherINSPEC Accession Number: 15584636
dc.identifier.urihttp://hdl.handle.net/1721.1/103781
dc.description.abstractRecently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.en_US
dc.description.sponsorshipMIT Media Lab Consortiumen_US
dc.description.sponsorshipSamsung (Firm)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant R01GM105018)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipSeventh Framework Programme (European Commission) (People Programme (Marie Curie Actions), FP7/2007-2013/ under REA grant agreement #327702)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/EMBC.2015.7318762en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAutomatic identification of artifacts in electrodermal activity dataen_US
dc.typeArticleen_US
dc.identifier.citationTaylor, Sara, Natasha Jaques, Weixuan Chen, Szymon Fedor, Akane Sano, and Rosalind Picard. “Automatic Identification of Artifacts in Electrodermal Activity Data.” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (August 2015), 25-29 Aug. 2015, Milan, Italy. pp.1934-1937.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorTaylor, Sara Annen_US
dc.contributor.mitauthorJaques, Natasha Maryen_US
dc.contributor.mitauthorChen, Weixuanen_US
dc.contributor.mitauthorFedor, Szymonen_US
dc.contributor.mitauthorSano, Akaneen_US
dc.contributor.mitauthorPicard, Rosalind W.en_US
dc.relation.journal2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsTaylor, Sara; Jaques, Natasha; Weixuan Chen, Natasha; Fedor, Szymon; Sano, Akane; Picard, Rosalinden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9550-2553
dc.identifier.orcidhttps://orcid.org/0000-0002-8413-9469
dc.identifier.orcidhttps://orcid.org/0000-0003-4484-8946
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
dc.identifier.orcidhttps://orcid.org/0000-0002-9857-0188
dc.identifier.orcidhttps://orcid.org/0000-0003-4133-9230
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record