Show simple item record

dc.contributor.authorGoldfinger, David C.
dc.contributor.authorFigueroa-Feliciano, Enectali
dc.contributor.authorDanowski, Meredith E
dc.contributor.authorHeine, Sarah N.T.
dc.date.accessioned2016-07-21T17:13:16Z
dc.date.available2017-03-01T16:14:48Z
dc.date.issued2016-02
dc.date.submitted2015-09
dc.identifier.issn0022-2291
dc.identifier.issn1573-7357
dc.identifier.urihttp://hdl.handle.net/1721.1/103788
dc.description.abstractMicro-X is a NASA funded, rocket borne X-ray imaging spectrometer that uses transition edge sensors (TESs) to do high-resolution microcalorimetry. The TESs are cooled by an adiabatic demagnetization refrigerator, whose salt pill functions as a heat sink for the detectors. We have made a thermal model of the cryostat with SPICE for the purposes of understanding its behavior at low temperatures. Implementing modifications based on this model has further allowed us to cool the system down to a lower temperature than had previously been accessible and to improve its low-temperature hold time. These modifications include a variety of schemes for power through heat sinks and tweaking the conductance between the cold baths and the refrigerated hardware. We present an overview of the model and its constituent parameters, information about thermal modifications, and a summary of results from thermal tests of the entire system.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Space Technology Research Fellowship)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10909-016-1549-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleThermal Design for the Micro-X Rocket Payloaden_US
dc.typeArticleen_US
dc.identifier.citationGoldfinger, D. C., E. Figueroa-Feliciano, M. Danowski, and S. N. T. Heine. “Thermal Design for the Micro-X Rocket Payload.” J Low Temp Phys 184, no. 3–4 (February 23, 2016): 699–705.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorGoldfinger, David C.en_US
dc.contributor.mitauthorFigueroa-Feliciano, E.en_US
dc.contributor.mitauthorDanowski, M.en_US
dc.contributor.mitauthorHeine, Sarah Nicole Trowbridgeen_US
dc.relation.journalJournal of Low Temperature Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-06-30T12:07:50Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsGoldfinger, D. C.; Figueroa-Feliciano, E.; Danowski, M.; Heine, S. N. T.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-4081-6322
dc.identifier.orcidhttps://orcid.org/0000-0001-5268-8423
dc.identifier.orcidhttps://orcid.org/0000-0001-9285-5556
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record