Show simple item record

dc.contributor.authorBlonigan, Patrick Joseph
dc.contributor.authorWang, Qiqi
dc.date.accessioned2016-08-08T15:17:08Z
dc.date.available2016-08-08T15:17:08Z
dc.date.issued2014-04
dc.date.submitted2014-02
dc.identifier.issn00219991
dc.identifier.urihttp://hdl.handle.net/1721.1/103864
dc.description.abstractSensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. This paper presents a new method for sensitivity analysis of ergodic chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jcp.2014.04.027en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleProbability density adjoint for sensitivity analysis of the Mean of Chaosen_US
dc.typeArticleen_US
dc.identifier.citationBlonigan, Patrick J., and Qiqi Wang. “Probability Density Adjoint for Sensitivity Analysis of the Mean of Chaos.” Journal of Computational Physics 270 (August 2014): 660–686.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorBlonigan, Patrick Josephen_US
dc.contributor.mitauthorWang, Qiqien_US
dc.relation.journalJournal of Computational Physicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBlonigan, Patrick J.; Wang, Qiqien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5552-6235
dc.identifier.orcidhttps://orcid.org/0000-0001-9669-2563
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record