MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model

Author(s)
Cousins, William; Sapsis, Themistoklis P.
Thumbnail
DownloadSapsis_Quantification and.pdf (2.369Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The aim of this work is the quantification and prediction of rare events characterized by extreme intensity in nonlinear waves with broad spectra. We consider a one-dimensional nonlinear model with deep-water waves dispersion relation, the Majda–McLaughlin–Tabak (MMT) model, in a dynamical regime that is characterized by a broadband spectrum and strong nonlinear energy transfers during the development of intermittent events with finite-lifetime. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A statistical analysis of the Gabor coefficients reveals (i) the low-dimensionality of the intermittent structures, (ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as (iii) the critical scales (or critical Gabor coefficients) where a critical amount of energy can trigger the formation of an extreme event. We analyze the unstable character of these special localized modes directly through the system equation and show that these intermittent events are due to the interplay of the system nonlinearity, the wave dispersion, and the wave dissipation which mimics wave breaking. These localized instabilities are triggered by random localizations of energy in space, created by the dispersive propagation of low-amplitude waves with random phase. Based on these properties, we design low-dimensional functionals of these Gabor coefficients that allow for the prediction of the extreme event well before the nonlinear interactions begin to occur.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/103870
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physica D: Nonlinear Phenomena
Publisher
Elsevier
Citation
Cousins, Will, and Themistoklis P. Sapsis. “Quantification and Prediction of Extreme Events in a One-Dimensional Nonlinear Dispersive Wave Model.” Physica D: Nonlinear Phenomena 280–281 (July 2014): 48–58.
Version: Original manuscript
ISSN
01672789

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.