Show simple item record

dc.contributor.authorKalidindi, Arvind Rama
dc.contributor.authorChookajorn, Tongjai
dc.contributor.authorSchuh, Christopher A.
dc.date.accessioned2016-08-10T20:15:41Z
dc.date.available2016-08-10T20:15:41Z
dc.date.issued2015-09
dc.identifier.issn1047-4838
dc.identifier.issn1543-1851
dc.identifier.urihttp://hdl.handle.net/1721.1/103886
dc.description.abstractThe instability of nanocrystalline materials against both grain growth and bulk phase separation is a principal challenge in their production and usage. This article reviews the thermodynamic stabilization of nanocrystalline structures by alloying, where a nanocrystalline state is considered to be stable if the nanostructure has the lowest free energy available to the alloy system, such that it is stable both against grain growth and the formation of bulk second phases. The thermodynamic accessibility of nanocrystalline structures in the alloy phase space introduces configurational degrees of freedom both at the atomic scale of the grain boundary structure and at the mesoscale level of the grains and grain boundary topology, which should be considered when identifying the equilibrium state. This article presents a survey of the kinds of thermodynamic models and simulations that have been developed to search for equilibrium nanocrystalline states. The review emphasizes the utility of Monte Carlo simulations to assess the thermodynamic stability of nanocrystalline states, including methods that have been proposed to account for degrees of freedom at both the atomic and grain scales. Although atomic scale simulations provide detailed segregation energetic information, the topological degrees of freedom in nanoscale polycrystals seem to be more critical considerations in the free energy description for identifying whether a nanocrystalline state is stable, and these are better addressed with mesoscale lattice-based simulation methods. A variety of interesting new nanostructural alloy states awaits further exploration by computational methods.en_US
dc.description.sponsorshipUnited States. Army Research Office (grant W911NF-14-1-0539)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (National Science Foundation Graduate Research Fellowship)en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11837-015-1636-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleNanocrystalline Materials at Equilibrium: A Thermodynamic Reviewen_US
dc.typeArticleen_US
dc.identifier.citationKalidindi, Arvind R., Tongjai Chookajorn, and Christopher A. Schuh. “Nanocrystalline Materials at Equilibrium: A Thermodynamic Review.” JOM 67, no. 12 (September 23, 2015): 2834–2843.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorKalidindi, Arvind Ramaen_US
dc.contributor.mitauthorChookajorn, Tongjaien_US
dc.contributor.mitauthorSchuh, Christopher A.en_US
dc.relation.journalJOMen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:17:50Z
dc.language.rfc3066en
dc.rights.holderThe Minerals, Metals & Materials Society
dspace.orderedauthorsKalidindi, Arvind R.; Chookajorn, Tongjai; Schuh, Christopher A.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-9856-2682
dc.identifier.orcidhttps://orcid.org/0000-0003-2854-650X
dc.identifier.orcidhttps://orcid.org/0000-0001-6844-3594
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record