Show simple item record

dc.contributor.authorDeDora, Daniel J.
dc.contributor.authorNedic, Sanja
dc.contributor.authorKatti, Pratha
dc.contributor.authorArnab, Shafique
dc.contributor.authorWald, Lawrence
dc.contributor.authorTakahashi, Atsushi
dc.contributor.authorVan Dijk, Koene R. A.
dc.contributor.authorStrey, Helmut H.
dc.contributor.authorMujica-Parodi, Lilianne R.
dc.date.accessioned2016-08-15T20:37:31Z
dc.date.available2016-08-15T20:37:31Z
dc.date.issued2016-05
dc.identifier.issn1662-453X
dc.identifier.urihttp://hdl.handle.net/1721.1/103922
dc.description.abstractTask-free connectivity analyses have emerged as a powerful tool in functional neuroimaging. Because the cross-correlations that underlie connectivity measures are sensitive to distortion of time-series, here we used a novel dynamic phantom to provide a ground truth for dynamic fidelity between blood oxygen level dependent (BOLD)-like inputs and fMRI outputs. We found that the de facto quality-metric for task-free fMRI, temporal signal to noise ratio (tSNR), correlated inversely with dynamic fidelity; thus, studies optimized for tSNR actually produced time-series that showed the greatest distortion of signal dynamics. Instead, the phantom showed that dynamic fidelity is reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics from scanner artifact. We then tested this measure, signal fluctuation sensitivity (SFS), against human resting-state data. As predicted by the phantom, SFS-and not tSNR-is associated with enhanced sensitivity to both local and long-range connectivity within the brain's default mode network.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIDA-1R2DA03846701 LRMP)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CBET-1264440 LRMP)en_US
dc.language.isoen_US
dc.publisherFrontiers Media S.A.en_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fnins.2016.00180en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleSignal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networksen_US
dc.typeArticleen_US
dc.identifier.citationDeDora, Daniel J., Sanja Nedic, Pratha Katti, Shafique Arnab, Lawrence L. Wald, Atsushi Takahashi, Koene R. A. Van Dijk, Helmut H. Strey and Lilianne R. Mujica-Parodi. "Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks." Frontiers in Neuroscience 10:Article 180 (May 2016), pp.1-15.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorWald, Lawrenceen_US
dc.contributor.mitauthorTakahashi, Atsushien_US
dc.contributor.mitauthorMujica-Parodi, Lilianne R.en_US
dc.relation.journalFrontiers in Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDeDora, Daniel J.; Nedic, Sanja; Katti, Pratha; Arnab, Shafique; Wald, Lawrence L.; Takahashi, Atsushi; Van Dijk, Koene R. A.; Strey, Helmut H.; Mujica-Parodi, Lilianne R.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record