MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A game-theoretic approach to optimizing the scale of incorporating renewable sources of energy and electricity storing systems in a regional electrical grid

Author(s)
Belenky, Alexander S.
Thumbnail
Download12667_2015_Article_145.pdf (500.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The problem of developing a decision support system for estimating a) the scale of incorporating available renewable sources of energy (such as solar and wind energy) in a part of a country’s electrical grid (called a regional electrical grid further in this paper), and b) the scale of storing electricity in this (regional) electrical grid to make these renewable sources of electric power competitive with traditional power generators (such as fossil-fuel and nuclear ones) and to reduce the cost of acquiring electricity from all the electric power generating facilities in the grid is considered. In the framework of this system, renewable sources of energy are viewed as electricity generating facilities under both existing and expected electricity prices, and the uncertainty of energy supply from them and the uncertainty of the grid customer demand for electricity during every 24 h are taken into account. A mathematical model underlying the system allows one to study the interaction of all the grid elements as a game with a finite (more than three) number of players on a polyhedron of connected player strategies (i.e., strategies that cannot be chosen by the players independently of each other) in a finite-dimensional space. It is shown that solving both parts of the problem under consideration is reducible to finding Nash equilibrium points in this game.
Date issued
2015-03
URI
http://hdl.handle.net/1721.1/103983
Department
Massachusetts Institute of Technology. Center for Engineering Systems Fundamentals; MIT Sociotechnical Systems Research Center
Journal
Energy Systems
Publisher
Springer Berlin Heidelberg
Citation
Belenky, Alexander S. “A Game-Theoretic Approach to Optimizing the Scale of Incorporating Renewable Sources of Energy and Electricity Storing Systems in a Regional Electrical Grid.” Energy Systems 6, no. 3 (March 24, 2015): 389–415.
Version: Author's final manuscript
ISSN
1868-3967
1868-3975

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.