MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractal Weyl laws for asymptotically hyperbolic manifolds

Author(s)
Datchev, Kiril; Dyatlov, Semyon
Thumbnail
Download39_2013_Article_225.pdf (910.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
For asymptotically hyperbolic manifolds with hyperbolic trapped sets we prove a fractal upper bound on the number of resonances near the essential spectrum, with power determined by the dimension of the trapped set. This covers the case of general convex cocompact quotients (including the case of connected trapped sets) where our result implies a bound on the number of zeros of the Selberg zeta function in disks of arbitrary size along the imaginary axis. Although no sharp fractal lower bounds are known, the case of quasifuchsian groups, included here, is most likely to provide them.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/104012
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Geometric and Functional Analysis
Publisher
Springer Basel
Citation
Datchev, Kiril, and Semyon Dyatlov. “Fractal Weyl Laws for Asymptotically Hyperbolic Manifolds.” Geometric and Functional Analysis 23, no. 4 (April 7, 2013): 1145–1206.
Version: Author's final manuscript
ISSN
1016-443X
1420-8970

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.