MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models

Author(s)
Andrews, Isaiah Smith; Mikusheva, Anna
Thumbnail
DownloadMikusheva_Maximum likelihood.pdf (437.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper examines the issue of weak identification in maximum likelihood, motivated by problems with estimation and inference in a multidimensional dynamic stochastic general equilibrium model. We show that two forms of the classical score (Lagrange multiplier) test for a simple hypothesis concerning the full parameter vector are robust to weak identification. We also suggest a test for a composite hypothesis regarding a subvector of parameters. The suggested subset test is shown to be asymptotically exact when the nuisance parameter is strongly identified. We pay particular attention to the question of how to estimate Fisher information and we make extensive use of martingale theory.
Date issued
2015-03
URI
http://hdl.handle.net/1721.1/104014
Department
Massachusetts Institute of Technology. Department of Economics
Journal
Quantitative Economics
Publisher
John Wiley & Sons
Citation
Andrews, Isaiah, and Anna Mikusheva. “Maximum Likelihood Inference in Weakly Identified Dynamic Stochastic General Equilibrium Models.” Quantitative Economics 6, no. 1 (March 2015): 123-152.
Version: Original manuscript
ISSN
17597323

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.