Show simple item record

dc.contributor.authorAmjad, Usamma
dc.contributor.authorAppel, Jennie
dc.contributor.authorLei, Ting
dc.contributor.authorChae, Junseok
dc.contributor.authorElhadi, Ali M.
dc.contributor.authorPreul, Mark C.
dc.contributor.authorBristol, Ruth E.
dc.contributor.authorSchwerdt, Helen
dc.date.accessioned2016-08-30T22:05:56Z
dc.date.available2016-08-30T22:05:56Z
dc.date.issued2015-03
dc.date.submitted2014-10
dc.identifier.issn0090-6964
dc.identifier.issn1573-9686
dc.identifier.urihttp://hdl.handle.net/1721.1/104086
dc.description.abstractReliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P[subscript T] ~ 1–110 mmH[subscript 2]O and outflow hydraulic resistance, R[subscript h] ~ 24–152 mmH[subscript 2]O/mL/min), with negligible reverse flow leakage (flow, Q[subscript O] > −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10439-015-1291-xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleIn Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalusen_US
dc.typeArticleen_US
dc.identifier.citationSchwerdt, Helen N., Usamma Amjad, Jennie Appel, Ali M. Elhadi, Ting Lei, Mark C. Preul, Ruth E. Bristol, and Junseok Chae. “In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus.” Ann Biomed Eng 43, no. 3 (March 2015): 603–615.en_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorSchwerdt, Helenen_US
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:16:41Z
dc.language.rfc3066en
dc.rights.holderBiomedical Engineering Society
dspace.orderedauthorsSchwerdt, Helen N.; Amjad, Usamma; Appel, Jennie; Elhadi, Ali M.; Lei, Ting; Preul, Mark C.; Bristol, Ruth E.; Chae, Junseoken_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0389-982X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record