MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An index theorem for end-periodic operators

Author(s)
Ruberman, Daniel; Saveliev, Nikolai; Mrowka, Tomasz S
Thumbnail
DownloadMrowka_An index theorem.pdf (460.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We extend the Atiyah, Patodi, and Singer index theorem for first-order differential operators from the context of manifolds with cylindrical ends to manifolds with periodic ends. This theorem provides a natural complement to Taubes’ Fredholm theory for general end-periodic operators. Our index theorem is expressed in terms of a new periodic eta-invariant that equals the Atiyah–Patodi–Singer eta-invariant in the cylindrical setting. We apply this periodic eta-invariant to the study of moduli spaces of Riemannian metrics of positive scalar curvature.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/104336
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. School of Science
Journal
Compositio Mathematica
Publisher
Cambridge University Press
Citation
Mrowka, Tomasz, Daniel Ruberman, and Nikolai Saveliev. “An Index Theorem for End-Periodic Operators.” Compositio Mathematica 152.2 (2016): 399–444.
Version: Original manuscript
ISSN
0010-437X
1570-5846

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.