MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An index theorem for end-periodic operators

Author(s)
Ruberman, Daniel; Saveliev, Nikolai; Mrowka, Tomasz S
Thumbnail
DownloadMrowka_An index theorem.pdf (460.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We extend the Atiyah, Patodi, and Singer index theorem for first-order differential operators from the context of manifolds with cylindrical ends to manifolds with periodic ends. This theorem provides a natural complement to Taubes’ Fredholm theory for general end-periodic operators. Our index theorem is expressed in terms of a new periodic eta-invariant that equals the Atiyah–Patodi–Singer eta-invariant in the cylindrical setting. We apply this periodic eta-invariant to the study of moduli spaces of Riemannian metrics of positive scalar curvature.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/104336
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. School of Science
Journal
Compositio Mathematica
Publisher
Cambridge University Press
Citation
Mrowka, Tomasz, Daniel Ruberman, and Nikolai Saveliev. “An Index Theorem for End-Periodic Operators.” Compositio Mathematica 152.2 (2016): 399–444.
Version: Original manuscript
ISSN
0010-437X
1570-5846

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.