Show simple item record

dc.contributor.authorVosoughi, Soroush
dc.contributor.authorVijayaraghavan, Prashanth
dc.contributor.authorRoy, Deb K
dc.date.accessioned2016-09-20T14:25:48Z
dc.date.available2016-09-20T14:25:48Z
dc.date.issued2016-07
dc.identifier.isbn9781450340694
dc.identifier.urihttp://hdl.handle.net/1721.1/104352
dc.description.abstractWe present Tweet2Vec, a novel method for generating general- purpose vector representation of tweets. The model learns tweet embeddings using character-level CNN-LSTM encoder-decoder. We trained our model on 3 million, randomly selected English-language tweets. The model was evaluated using two methods: tweet semantic similarity and tweet sentiment categorization, outperforming the previous state-of-the-art in both tasks. The evaluations demonstrate the power of the tweet embeddings generated by our model for various tweet categorization tasks. The vector representations generated by our model are generic, and hence can be applied to a variety of tasks. Though the model presented in this paper is trained on English-language tweets, the method presented can be used to learn tweet embeddings for different languages.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2911451.2914762en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceVosoughien_US
dc.titleTweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoderen_US
dc.typeArticleen_US
dc.identifier.citationVosoughi, Soroush, Prashanth Vijayaraghavan, and Deb Roy. "Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder." Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’16, July 17-21, 2016, Pisa, Italy.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.approverVosoughi, Soroushen_US
dc.contributor.mitauthorVosoughi, Soroush
dc.contributor.mitauthorVijayaraghavan, Prashanth
dc.contributor.mitauthorRoy, Deb K
dc.relation.journalProceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR '16en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2564-8909
dc.identifier.orcidhttps://orcid.org/0000-0002-5826-1591
dc.identifier.orcidhttps://orcid.org/0000-0002-4333-7194
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record