Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorMinicozzi, William
dc.date.accessioned2016-09-22T18:49:50Z
dc.date.available2016-09-22T18:49:50Z
dc.date.issued2015-09
dc.date.submitted2013-02
dc.identifier.issn0020-9910
dc.identifier.issn1432-1297
dc.identifier.urihttp://hdl.handle.net/1721.1/104371
dc.description.abstractA mean curvature flow starting from a closed embedded hypersurface in R[superscript n+1] must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded (n−1)-dimensional Lipschitz submanifolds plus a set of dimension at most n−2. If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In R³ and R[superscript 4], we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grants DMS 1404540, DMS 11040934, DMS 1206827)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grants DMS 0854774 and DMS 0853501)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00222-015-0617-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleThe singular set of mean curvature flow with generic singularitiesen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck, and William P. Minicozzi. “The Singular Set of Mean Curvature Flow with Generic Singularities.” Inventiones mathematicae 204.2 (2016): 443–471.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobias
dc.contributor.mitauthorMinicozzi, William
dc.relation.journalInventiones mathematicaeen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:24:20Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg
dspace.orderedauthorsColding, Tobias Holck; Minicozzi, William P.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
dc.identifier.orcidhttps://orcid.org/0000-0003-4211-6354
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record