Show simple item record

dc.contributor.authorPoonen, Bjorn
dc.contributor.authorTesta, Damiano
dc.contributor.authorvan Luijk, Ronald
dc.date.accessioned2016-09-22T22:29:56Z
dc.date.available2016-09-22T22:29:56Z
dc.date.issued2015-02
dc.date.submitted2014-08
dc.identifier.issn0010-437X
dc.identifier.issn1570-5846
dc.identifier.urihttp://hdl.handle.net/1721.1/104378
dc.description.abstractAssuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension p cycles for any p.en_US
dc.description.sponsorshipJohn Simon Guggenheim Memorial Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grants DMS-0841321 and DMS-1069236)en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/S0010437X14007878en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleComputing Néron–Severi groups and cycle class groupsen_US
dc.typeArticleen_US
dc.identifier.citationPoonen, Bjorn, Damiano Testa, and Ronald van Luijk. “Computing Néron–Severi Groups and Cycle Class Groups.” Compositio Mathematica 151.4 (2015): 713–734.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorPoonen, Bjorn
dc.relation.journalCompositio Mathematicaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsPoonen, Bjorn; Testa, Damiano; van Luijk, Ronalden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8593-2792
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record