dc.contributor.author | Bernardara, M. | |
dc.contributor.author | Trigo Neri Tabuada, Goncalo Jorge | |
dc.date.accessioned | 2016-09-26T19:26:40Z | |
dc.date.available | 2016-09-26T19:26:40Z | |
dc.date.issued | 2016-07 | |
dc.date.submitted | 2015-05 | |
dc.identifier.issn | 1064-5632 | |
dc.identifier.issn | 1468-4810 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104384 | |
dc.description.abstract | Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when dim(S) [less than or equal to] 1), Grothendieck's standard conjecture of Lefschetz type (when dim(S) [less than or equal to] 2), and Hodge's conjecture (when dim(S) [less than or equal to] 3). | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Award #1350472) | en_US |
dc.description.sponsorship | Fundação para a Ciência e a Tecnologia (Portugal) (project grant UID/MAT/00297/2013 (Centro de Matemática e Aplicações)) | en_US |
dc.language.iso | en_US | |
dc.publisher | Turpion | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1070/IM8409 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bernardara, M., and G. Tabuarda. "Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives." Izvestiya: Mathematics, Volume 80, Number 3 (2016), pp. 463-480. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jorge | |
dc.relation.journal | Izvestiya: Mathematics | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |