Show simple item record

dc.contributor.authorKottke, Chris
dc.contributor.authorMelrose, Richard B
dc.date.accessioned2016-09-29T22:25:38Z
dc.date.available2016-09-29T22:25:38Z
dc.date.issued2015
dc.identifier.issn10732780
dc.identifier.issn1945001X
dc.identifier.urihttp://hdl.handle.net/1721.1/104452
dc.description.abstract‘Loop-fusion cohomology’ is defined on the continuous loop space of a manifold in terms of Čech cochains satisfying two multiplicative conditions with respect to the fusion and figure-of-eight products on loops. The main result is that these cohomology groups, with coefficients in an abelian group, are isomorphic to those of the manifold and the transgression homomorphism factors through the isomorphism.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-1005944)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.4310/MRL.2015.v22.n4.a11en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLoop-fusion cohomology and transgressionen_US
dc.typeArticleen_US
dc.identifier.citationKottke, Chris, and Richard B. Melrose. “Loop-Fusion Cohomology and Transgression.” Mathematical Research Letters 22.4 (2015): 1177–1192.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMelrose, Richard B
dc.relation.journalMathematical Research Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKottke, Chris; Melrose, Richard B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1494-8228
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record