Show simple item record

dc.contributor.authorYoder, Theodore James
dc.contributor.authorTakagi, Ryuji
dc.contributor.authorChuang, Isaac
dc.date.accessioned2016-09-30T21:40:10Z
dc.date.available2016-09-30T21:40:10Z
dc.date.issued2016-09
dc.date.submitted2016-03
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/1721.1/104631
dc.description.abstractIt is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of nontransversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here, we demonstrate precisely the existence of such gates. In particular, we show how the limits of nontransversality can be overcome by performing rounds of intermediate error correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (RQCC Project 1111337)en_US
dc.description.sponsorshipUnited States. Army Research Officeen_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipTakenaka Scholarshipen_US
dc.description.sponsorshipMIT Department of Physics (Frank Fellowship)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevX.6.031039en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleUniversal Fault-Tolerant Gates on Concatenated Stabilizer Codesen_US
dc.typeArticleen_US
dc.identifier.citationYoder, Theodore J., Ryuji Takagi, and Isaac L. Chuang. “Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes.” Physical Review X 6.3 (2016): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorYoder, Theodore James
dc.contributor.mitauthorTakagi, Ryuji
dc.contributor.mitauthorChuang, Isaac
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-09-13T22:00:07Z
dc.language.rfc3066en
dc.rights.holderauthors
dspace.orderedauthorsYoder, Theodore J.; Takagi, Ryuji; Chuang, Isaac L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9614-2836
dc.identifier.orcidhttps://orcid.org/0000-0001-7296-523X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record