MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized blow-up of corners and fiber products

Author(s)
Kottke, Chris; Melrose, Richard B
Thumbnail
DownloadMelrose_Generalized blow-up.pdf (620.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Real blow-up, including inhomogeneous versions, of boundary faces of a manifold (with corners) is an important tool for resolving singularities, degeneracies and competing notions of homogeneity. These constructions are shown to be particular cases of generalized boundary blow-up in which a new manifold and blow-down map are constructed from, and conversely determine, combinatorial data at the boundary faces in the form of a refinement of the basic monoidal complex of the manifold. This data specifies which notion of homogeneity is realized at each of the boundary hypersurfaces in the blown-up space. As an application of this theory, the existence of fiber products is examined for the natural smooth maps in this context, the b-maps. Transversality of the b-differentials is shown to ensure that the set-theoretic fiber product of two maps is a binomial variety. Properties of these (extrinsically defined) spaces, which generalize manifolds but have mild singularities at the boundary, are investigated, and a condition on the basic monoidal complex is found under which the variety has a smooth structure. Applied to b-maps this additional condition with transversality leads to a universal fiber product in the context of manifolds with corners. Under the transversality condition alone the fiber product is resolvable to a smooth manifold by generalized blow-up and then has a weaker form of the universal mapping property requiring blow-up of the domain.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/104634
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Transactions of the American Mathematical Society
Citation
Kottke, Chris, and Richard B. Melrose. “Generalized Blow-up of Corners and Fiber Products.” Transactions of the American Mathematical Society 367.1 (2014): 651–705.
Version: Final published version
ISSN
0002-9947
1088-6850

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.