MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The generalized Legendre transform and its applications to inverse spectral problems

Author(s)
Guillemin, Victor W; Wang, Zuoqin
Thumbnail
DownloadGuillemin_The generalized.pdf (368.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let M be a Riemannian manifold, τ : G x M --> M an isometric action on M of an n-torus G and V : M --> R a bounded G-invariant smooth function. By G-invariance the Schrödinger operator, P = -h[superscript 2][Delta]M + V, restricts to a self-adjoint operator on L[superscript 2](M)[subscript alpha over h], alpha being a weight of G and 1[over h] a large positive integer. Let [c[subscript alpha], [infinity]] be the asymptotic support of the spectrum of this operator. We will show that c[subscript alpha] extend to a function, W : g*-->R and that, modulo assumptions on τ and V one can recover V from W, i.e. prove that V is spectrally determined. The main ingredient in the proof of this result is the existence of a 'generalized Legendre transform' mapping the graph of dW onto the graph of dV.
Date issued
2015-12
URI
http://hdl.handle.net/1721.1/104646
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Inverse Problems
Publisher
Institute of Physics Publishing (IOP)
Citation
Guillemin, Victor and Zuoqin Wang. "The generalized Legendre transform and its applications to inverse spectral problems." Inverse Problems 32:1 (December 2015), 015001.
Version: Original manuscript
ISSN
0266-5611
1361-6420

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.