Show simple item record

dc.contributor.authorMu, Lili
dc.contributor.authorStanley, Richard P
dc.date.accessioned2016-10-06T19:49:09Z
dc.date.available2016-10-06T19:49:09Z
dc.date.issued2015-04
dc.date.submitted2015-01
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/104653
dc.description.abstractLet G be a simple graph on the vertex set {v[subscript 1],…,v[subscript n]} with edge set E. Let K be a field. The graphical arrangement A[subscript G] in K[superscript n] is the arrangement x[subscript i]−x[subscript j]=0,v[subscript i]v[subscript j] ∈ E. An arrangement A is supersolvable if the intersection lattice L(c(A)) of the cone c(A) contains a maximal chain of modular elements. The second author has shown that a graphical arrangement A[subscript G] is supersolvable if and only if G is a chordal graph. He later considered a generalization of graphical arrangements which are called ψ-graphical arrangements. He conjectured a characterization of the supersolvability and freeness (in the sense of Terao) of a ψ-graphical arrangement. We provide a proof of the first conjecture and state some conditions on free ψ-graphical arrangements.en_US
dc.description.sponsorshipChina Scholarship Councilen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1068625)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-015-9684-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleSupersolvability and Freeness for ψ-Graphical Arrangementsen_US
dc.typeArticleen_US
dc.identifier.citationMu, Lili, and Richard P. Stanley. “Supersolvability and Freeness for ψ-Graphical Arrangements.” Discrete & Computational Geometry 53.4 (2015): 965–970.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMu, Lili
dc.contributor.mitauthorStanley, Richard P
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:14Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsMu, Lili; Stanley, Richard P.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record