dc.contributor.author | Mu, Lili | |
dc.contributor.author | Stanley, Richard P | |
dc.date.accessioned | 2016-10-06T19:49:09Z | |
dc.date.available | 2016-10-06T19:49:09Z | |
dc.date.issued | 2015-04 | |
dc.date.submitted | 2015-01 | |
dc.identifier.issn | 0179-5376 | |
dc.identifier.issn | 1432-0444 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/104653 | |
dc.description.abstract | Let G be a simple graph on the vertex set {v[subscript 1],…,v[subscript n]} with edge set E. Let K be a field. The graphical arrangement A[subscript G] in K[superscript n] is the arrangement x[subscript i]−x[subscript j]=0,v[subscript i]v[subscript j] ∈ E. An arrangement A is supersolvable if the intersection lattice L(c(A)) of the cone c(A) contains a maximal chain of modular elements. The second author has shown that a graphical arrangement A[subscript G] is supersolvable if and only if G is a chordal graph. He later considered a generalization of graphical arrangements which are called ψ-graphical arrangements. He conjectured a characterization of the supersolvability and freeness (in the sense of Terao) of a ψ-graphical arrangement. We provide a proof of the first conjecture and state some conditions on free ψ-graphical arrangements. | en_US |
dc.description.sponsorship | China Scholarship Council | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1068625) | en_US |
dc.publisher | Springer US | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00454-015-9684-z | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer US | en_US |
dc.title | Supersolvability and Freeness for ψ-Graphical Arrangements | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Mu, Lili, and Richard P. Stanley. “Supersolvability and Freeness for ψ-Graphical Arrangements.” Discrete & Computational Geometry 53.4 (2015): 965–970. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Mu, Lili | |
dc.contributor.mitauthor | Stanley, Richard P | |
dc.relation.journal | Discrete & Computational Geometry | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-08-18T15:41:14Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer Science+Business Media New York | |
dspace.orderedauthors | Mu, Lili; Stanley, Richard P. | en_US |
dspace.embargo.terms | N | en |
dc.identifier.orcid | https://orcid.org/0000-0003-3123-8241 | |
mit.license | OPEN_ACCESS_POLICY | en_US |